Бронзовые сплавы
Бронзы литейные в чушках ГОСТ 614-97: | ||
Наименование | Марка | Цена с НДС, руб/кг |
Бронзовая чушка | БрО5Ц6С5 | - |
Бронзовая чушка | БрО3Ц6С5 | - |
Бронзовая чушка | БрО3Ц13С4 | - |
Бронзовая чушка | БрО4Ц8С5 | - |
Бронзовая чушка | БрО3Ц8С4Н1 | - |
Бронзовая чушка | БрО10Ф1 | - |
Бронзовая чушка | БрА10Ж3 | - |
Бронзовая чушка | БрА10Ж3Мц2 | - |
Бронзы литейные в чушках ГОСТ 613-79: | ||
Наименование | Марка | Цена с НДС, руб/кг |
Бронзовая чушка | БрО3Ц12С5 | - |
Бронзовая чушка | БрО3Ц7С5Н1 | - |
Бронзовая чушка | БрО4Ц4С17 | - |
Бронзовая чушка | БрО5Ц5С5 | - |
Бронзовая чушка | БрО10Ф1 | - |
Бронзовая чушка | БрО6Ц6С3 | - |
Бронзовая чушка | БрО4Ц7С5 | - |
ОЛОВЯННЫЕ БРОНЗЫ
Оловянные бронзы применяют с древнейших времен и они хорошо освоены промышленностью.
Бронзы отличаются невысокой жидкотекучестью из-за большого интервала кристаллизации. По этой же причине в бронзе не образуется концентрированная усадочная раковина, а возникает рассеянная мелкая пористость. Линейная усадка у оловянных бронз очень невелика и составляет 0,8% при литье в песчаную форму и 1,4% при литье в кокиль. Указанные свойства облегчают получение отливок, от которых не требуется высокой герметичности.
В оловянные бронзы часто вводят фосфор. Фосфор, во-первых, раскисляет медь и уменьшает содержание водорода в расплаве; во-вторых, повышает прочностные свойства; в-третьих, улучшает жидкотекучесть и позволяет получать отливки сложной формы с тонкими стенками, в частности, качественное художественное литье. Фосфор в бронзах с небольшим количеством олова повышает сопротивление износу из-за появления в структуре твердых частичек фосфида меди Си3Р. Однако фосфор ухудшает технологическую пластичность , поэтому в деформируемые сплавы вводят не более 0,5% Р.
Оловянные бронзы легируют цинком в больших количествах, но в пределах растворимости. При таких содержаниях цинк благоприятно влияет на свойства оловянных бронз:
- снижает склонность к ликвации и повышает жидкотекучесть, поскольку он уменьшает температурный интервал кристаллизации сплавов;
- способствует получению более плотного литья;
- раскисляет расплав и уменьшает содержание в нем водорода;
- улучшает прочностные свойства .
Никель повышает прочностные свойства и улучшает пластичность и деформируемость, повышает их коррозионную стойкость, плотность, уменьшает ликвацию. Бронзы с никелем термически упрочняются закалкой и старением. Свинец повышает жидкотекучесть и плотность , их антифрикционные свойства.
Естественно, желательно применять дешевые недефицитные легирующие элементы. По этой причине в литейных бронзах стремятся уменьшать содержание олова за счет дополнительного легирования другими элементами.
- По назначению оловянные бронзы можно разделить на несколько групп :
Литейные стандартные БрОЗЦ12С5 Бр05Ц5С5 Бр04Ц4С17 Бр04Ц7С5 БрОЗЦ7С5Н1 - Литейные ответственного назначения БрОФ Бр010Ц2 Бр08Ц4 БрОбЦбСЗ БрО10С10 Бр05С25
- Деформируемые БрОФ 8-0,3 БрОФ 6,5-0,4 БрОФ 6,5-0,15 БрОФ 4-0,25 БрОЦ 4-3 БрОЦС 4-4-2,5
Первая группа — литейные стандартные , предназначенные для получения разных деталей машин методами фасонного литья. К этим бронзам, помимо высоких литейных свойств, предъявляются следующие требования:
- хорошая обрабатываемость резанием;
- высокая плотность отливок;
- достаточная коррозионная стойкость;
- высокие механические свойства.
Вторая группа — литейные нестандартные ответственного назначения, обладающие высокими антифрикционными свойствами и хорошим сопротивлением истиранию. Эти сплавы применяют для изготовления подшипников скольжения и других деталей, работающих в условиях трения. Наибольшей прочностью в сочетании с высокими антифрикционными свойствами обладает бронза Бр010Ф1, что обусловлено высоким содержанием олова и легированием фосфором.
Третья группа — деформируемые , они отличаются от литейных более высокой прочностью, вязкостью, пластичностью, сопротивлением усталости. Основные легирующие элементы в деформируемых бронзах - олово, фосфор, цинк и свинец, причем олова в них меньше, чем в литейных бронзах. Деформируемые бронзы можно разделить на сплавы, легированные оловом и фосфором (БрОФ 6,5-0,4; БрОФ 6,5-0,15; БрОФ 4-0,25), и сплавы, не содержащие фосфора (БрОЦ 4-3 и БрОЦС 4-4-2,5). Из этих бронз наилучшая обрабатываемость давлением у бронзы БрОЦ 4-3. Бронза БрОЦС 4-4-2,5, содержащая свинец, совсем не обрабатывается давлением в горячем состоянии из-за присутствия в ней легкоплавкой эвтектики. Эта бронза предназначена для изготовления деталей, работающих в условиях трения, и поэтому легирована свинцом.
Четвертая группа — сплавы художественного литья (БХ1, БХ2, БХЗ). Для изготовления художественных изделий бронза — наиболее подходящий материал. Она достаточно жидкотекуча, хорошо заполняет самые сложные формы, обладает очень небольшой усадкой при затвердевании и поэтому хорошо передает форму изделия. Эти бронзы отличаются красивым цветом, сохраняющимся благодаря их высокой коррозионной стойкости достаточно долгое время. На поверхности бронз под воздействием естественной среды образуется патина — тончайшая оксидная пленка различных цветовых оттенков, от зеленого до темно-коричневого. Патина придает бронзовым скульптурам и декоративным изделиям красивую ровную окраску.
Основные виды термической обработки бронз — гомогенизация и промежуточный отжиг. Основная цель этих операций — облегчение обработки давлением. Гомогенизацию проводят при 700...750 °С с последующим быстрым охлаждением. Для снятия остаточных напряжений в отливках достаточно 1-ч отжига при 250 °С. Промежуточный отжиг при холодной обработке давлением проводят при температурах 550... 700 °С.
АЛ�®МИНИЕВЫЕ БРОНЗЫ
По распространенности в промышленности алюминиевые бронзы занимают одно из первых мест среди медных сплавов. В меди растворяется довольно большое количество алюминия: 7,4% при 1035 °С, 9,4% при 565 °С и около 9% при комнатной температуре.С увеличением содержания алюминия прочностные свойства сплавов повышаются .Оптимальными механическими свойствами обладают сплавы, содержащие 5...8% А1.
Наряду с повышенной прочностью они сохраняют высокую пластичность.
Алюминиевые бронзы по сравнению с оловянными имеют следующие преимущества:
- меньшую склонность к дендритной ликвации;
- большую плотность отливок;
- лучшую жидкотекучесть;
- более высокую прочность и жаропрочность;
- более высокую коррозионную и противокавитационную стойкость; .....
- меньшую склонность к хладноломкости.
Кроме того, алюминиевые бронзы не дают искр при ударе.
Недостатки алюминиевых бронз:
- значительная усадка при кристаллизации
- склонность к образованию крупных столбчатых кристаллов;
- сильное окисление в расплавленном состоянии, при котором образуются оксиды алюминия, приводящие к шиферному излому в деформированных полуфабрикатах;
- вспенивание расплава при заливке в форму;
- трудность пайки твердыми и мягкими припоями;
- недостаточная коррозионная стойкость в перегретом паре.
Для устранения этих недостатков алюминиевые бронзы дополнительно легируют марганцем, железом, никелем, свинцом.
Марганец растворяется в алюминиевых бронзах в больших количествах (до 10%). Марганец повышает прочность бронз, их пластичность, коррозионную стойкость, антифрикционные свойства, способность к холодной обработке давлением. Двойные сплавы меди с алюминием не обрабатываются давлением в холодном состоянии, если содержание алюминия превышает 7 %.
Тройная бронза БрАМ9-2 хорошо обрабатывается давлением как в горячем, так и в холодном состоянии. Никель сильно уменьшает растворимость алюминия в меди при понижении температуры . Поэтому медные сплавы, одновременно легированные алюминием и никелем, существенно упрочняются при термической обработке, состоящей из закалки и старения, из-за выделения интерметаллидов . Никель улучшает механические свойства и коррозионную стойкость алюминиевых бронз, повышает температуру их рекристаллизации и жаропрочные свойства. Сплавы меди, легированные алюминием и никелем, хорошо обрабатываются давлением, имеют высокие антифрикционные свойства и не склонны к хладноломкости.
Небольшие содержания титана увеличивают плотность отливок и их прочность. Благоприятное влияние титана на свойства бронз обусловлено его действием как дегазатора, уменьшающего газонасыщенность расплава, и модификатора, измельчающего зерно.
Цинк заметно снижает антифрикционные и технологические свойства алюминиевых бронз и поэтому является нежелательной примесью.
Некоторые алюминиевые бронзы применяют только как литейные (БрАМц10-2; БрАЖН11-6-6; БрАЖС7-1,5-1,5), другие - только как деформируемые (БрА5, БрА7). Большую группу бронз (БрАМц9-2; БрАЖ9-4; БрАЖМц10-3-1,5; БрАЖН10-4-4) используют и как деформируемые, и как литейные сплавы. Если бронзы третьей группы применяют как литейные, то к их марке добавляют букву Л. Деформируемые и литейные бронзы одной марки различаются по содержанию примесей. В литейных сплавах допускается большее их содержание.
Наиболее пластичная и наименее прочная бронза — БрА5. Она легко деформируется при всех видах обработки давлением. Меньшей, но достаточно высокой обрабатываемостью давлением отличаются бронзы БрА7 и БрАМц9-2, предназначенные для получения прутков, листов и лент. Остальные бронзы (БрАЖ9-4; БрАЖМц10-3-1,5; БрАЖН10-4-4) деформируются только в горячем состоянии, так как в их структуре довольно много эвтектоида (до 30...35%). Вместе с тем благодаря эвтектоиду и железистым включениям антифрикционные свойства и прочность этих бронз выше, чем у перечисленных выше сплавов.
Из всех медно-алюминиевых сплавов наибольшим временным сопротивлением разрыву обладает бронза БрАЖ10-4-4, которую применяют и как деформируемую, и как литейную. Она жаропрочна и сохраняет удовлетворительную прочность до 400...500 °С . При температурах до 250...400 °С у бронзы БрАЖН10-4-4 наименьшая ползучесть по сравнению с другими алюминиевыми бронзами.
Деформируемые полуфабрикаты применяют в состоянии поставки или подвергают дорекристаллизационному или рекристаллизационному отжигу. Дорекристаллизационный отжиг алюминиевых бронз приводит к повышению их упругих свойств. Большинство алюминиевых бронз относятся к термически неупрочняемым сплавам. Исключение составляет бронза БрАЖН 10-4-4, которая эффективно упрочняется закалкой с 980 °С с последующим старением при 400 °С, 2 ч.
БЕРИЛЛИЕВЫЕ БРОНЗЫ
Сплавы меди с бериллием отличаются уникальным благоприятным сочетанием в них высоких прочностных и упругих свойств, высокой электро- и теплопроводностью, высоким сопротивлением разрушению и коррозионной стойкостью. Бериллий обладает в меди уменьшающейся с понижением температуры растворимостью , поэтому бериллиевые бронзы термически упрочняются.Оптимальными свойствами обладают сплавы, содержащие 2...2,5% Be. При дальнейшем увеличении содержания бериллия прочность сплавов повышается мало, а пластичность становится чрезмерно малой. Как и другие дисперсионно-твердеющие сплавы, бериллиевые бронзы обладают наилучшим комплексом свойств при содержании легирующих элементов, близком к максимальной растворимости. Пересыщенный твердый раствор в интервале температур 500...380 °С распадается очень быстро. Поэтому скорость охлаждения бериллиевых бронз при закалке должна быть достаточно большой (обычно их закаливают в воду). Нерезкое охлаждение в интервале температур 500...380 °С приводит к частичному прерывистому распаду пересыщенного раствора с образованием пластинчатых перлитообразных структур. Прерывистый распад нежелателен по двум причинам: а) сплавы охрупчиваются из-за локализации прерывистого распада по границам зерен; б) при последующем старении уменьшается упрочнение, обусловленное непрерывным распадом пересыщенного раствора, а эффект упрочнения от прерывистого распада меньше, чем от непрерывного.
Бериллиевые бронзы дополнительно легируют никелем и титаном. Никель образует малорастворимый бериллид никеля NiBe и уменьшает растворимость бериллия в меди . Он замедляет фазовые превращения в бериллиевых бронзах и облегчает их термическую обработку, так как отпадает необходимость в крайне высоких скоростях охлаждения. Никель задерживает рекристаллизационные процессы в сплавах Cu-Be, способствует получению более мелкого рекристаллизованного зерна, повышает жропрочность. Титан образует соединения которые обеспечивают дополнительное упрочнение.
Бериллиевые бронзы отличаются высоким сопротивлением малым пластическим деформациям из-за сильного торможения дислокаций дисперсными частицами. С увеличением этого сопротивления уменьшаются обратимые и необратимые микропластические деформации при данном приложенном напряжении и, следовательно, релаксация напряжений. Все это приводит к повышению релаксационной стойкости сплавов — основной характеристики, которая определяет свойства упругих элементов.
Наибольшее распространение получили бронзы БрБ2, БрБНТ1,7 и БрБНТ1,9. После упрочняющей термической обработки они характеризуются высокими прочностными и пружинящими свойствами, а также удовлетворительным сопротивлением ползучести и хорошей коррозионной стойкостью. Они обладают отличной износостойкостью, сохраняют высокую электро- и теплопроводность. Эти сплавы мало склонны к хладноломкости и могут работать в интервале температур от —200 до +250 °С.
Указанные свойства обусловили применение бериллиевых бронз в ответственных назначениях, где требуется сочетание ряда уникальных свойств. Широкому применению бериллиевых бронз препятствует стоимость и дефицитность бериллия, А также его токсичность.
КРЕМНИСТЫЕ БРОНЗЫ
Кремний растворяется в меди в довольно больших количествах: 5,3% при 842 °С; 4,65% при 356 °С и около 3,5% при комнатной температуре. При увеличении содержания кремния до 3,5% повышается не только временное сопротивление разрыву меди, но и относительное удлинение .
Двойные сплавы системы Cu-Si не применяют; их дополнительно легируют никелем и марганцем, которые улучшают механические и коррозионные свойства кремнистых бронз. При введении в сплавы меди, содержащие до 3% Si, менее 1,5% Mn, упрочнение обусловлено только растворным механизмом.
Кремнистые бронзы не дают искр при ударе; обладают довольно высокой жидкотекучестью. Недостатком этих сплавов является большая склонность к поглощению газов.
В промышленном масштабе применяют бронзы БрКМцЗ-1 и БрКН1-3, БрКМцЗ-1 имеет однофазную структуру и отличается высокими технологическими, механическими, пружинящими и коррозионными свойствами. Эту бронзу применяют как деформируемую. БрКН1-3 термически упрочняется; после закалки с 850 °С временное сопротивление разрыву составляет около 350 МПа при относительном удлинении 30%, а после старения при 450 °С в течение 1 ч - 700 МПа при относительном удлинении 8%.
По вопросам обращайтесь в отдел продаж по тел.: +7 (8202) 20-00-10, +7 (8202) 20-00-50
Каталог продукции ←
Связаться с нами:
Если у вас появились вопросы, вы можете связаться с нами любым из следующих способов:Звоните:
тел./факс (8202) 20-00-10, 20-00-50
Пишите:
E-mail для заказов: [email protected]
Написать письмо